Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Molecules ; 27(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066279

ABSTRACT

Antimicrobial resistance (AMR) is a major concern for the survival of mankind. COVID-19 accelerated another silent pandemic of AMR through the uncontrolled use of antibiotics and biocides. New generations of antimicrobial agents are needed to combat resistant pathogens. Crown ethers can be used as models for drug action because they are similar to antibiotics. Iodine is a well-known microbicide but is characterized by instability and short-term effectivity. Iodine can be stabilized in the form of polyiodides that have a rich topology but are dependent on their immediate surroundings. In addition, copper has been successfully used since the beginning of history as a biocidal agent. We, therefore, combined iodine and copper with the highly selective crown ether 1,4,7,10-tetraoxacyclododecane (12-crown-4). The morphology and composition of the new pentaiodide [Cu(12-crown-4)2]I5 was investigated. Its antimicrobial activities against a selection of 10 pathogens were studied. It was found that C. albicans WDCM 00054 is highly susceptible to [Cu(12-crown-4)2]I5. Additionally, the compound has good to intermediate antimicrobial activity against Gram-positive and Gram-negative bacilli. The chain-like pentaiodide structure is V-shaped and consists of iodine molecules with very short covalent bonds connected to triiodides by halogen bonding. The single crystal structure is arranged across the lattice fringes in the form of ribbons or honeycombs. The susceptibility of microorganisms towards polyiodides depends on polyiodide bonding patterns with halogen-, covalent-, and non-covalent bonding.


Subject(s)
Anti-Infective Agents , COVID-19 , Crown Ethers , Disinfectants , Iodine , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Copper/chemistry , Crown Ethers/chemistry , Halogens , Humans , Iodides , Iodine/chemistry
2.
Polymers (Basel) ; 14(10)2022 May 10.
Article in English | MEDLINE | ID: covidwho-1875736

ABSTRACT

Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.

3.
J Biomol Struct Dyn ; 39(10): 3771-3779, 2021 07.
Article in English | MEDLINE | ID: covidwho-1343544

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative representative of a severe respiratory illness resulted in widespread human infections and deaths in nearly all of the countries since late 2019. There is no therapeutic FDA-approved drug against SARS-CoV-2 infection, although a combination of anti-viral drugs is directly being practiced in some countries. A broad-spectrum of antiviral agents are being currently evaluated in clinical trials, and in this review, we specifically focus on the application of Remdesivir (RVD) as a potential anti-viral compound against Middle East respiratory syndrome (MERS) -CoV, SARS-CoV and SARS-CoV-2. First, we overview the general information about SARS-CoV-2, followed by application of RDV as a nucleotide analogue which can potentially inhibits RNA-dependent RNA polymerase of COVs. Afterwards, we discussed the kinetics of SARS- or MERS-CoV proliferation in animal models which is significantly different compared to that in humans. Finally, some ongoing challenges and future perspective on the application of RDV either alone or in combination with other anti-viral agents against CoVs infection were surveyed to determine the efficiency of RDV in preclinical trials. As a result, this paper provides crucial evidence of the potency of RDV to prevent SARS-CoV-2 infections.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , RNA-Dependent RNA Polymerase , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Drug Repositioning , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects
4.
Polymers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1305776

ABSTRACT

The non-toxic inorganic antimicrobial agents iodine (I2) and copper (Cu) are interesting alternatives for biocidal applications. Iodine is broad-spectrum antimicrobial agent but its use is overshadowed by compound instability, uncontrolled iodine release and short-term effectiveness. These disadvantages can be reduced by forming complex-stabilized, polymeric polyiodides. In a facile, in-vitro synthesis we prepared the copper-pentaiodide complex [Cu(H2O)6(12-crown-4)5]I6 · 2I2, investigated its structure and antimicrobial properties. The chemical structure of the compound has been verified. We used agar well and disc-diffusion method assays against nine microbial reference strains in comparison to common antibiotics. The stable complex revealed excellent inhibition zones against C. albicans WDCM 00054, and strong antibacterial activities against several pathogens. [Cu(H2O)6(12-crown-4)5]I6 · 2I2 is a strong antimicrobial agent with an interesting crystal structure consisting of complexes located on an inversion center and surrounded by six 12-crown-4 molecules forming a cationic substructure. The six 12-crown-4 molecules form hydrogen bonds with the central Cu(H2O)6. The anionic substructure is a halogen bonded polymer which is formed by formal I5- repetition units. The topology of this chain-type polyiodide is unique. The I5- repetition units can be understood as a triodide anion connected to two iodine molecules.

5.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: covidwho-1282534

ABSTRACT

Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Aloe/chemistry , Antifungal Agents/chemistry , Gentamicins/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning/methods , Nystatin/chemistry , Plant Extracts/chemistry , Povidone/chemistry , Salvia/chemistry , Salvia officinalis/chemistry , Spectrometry, X-Ray Emission/methods , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
6.
Int J Biol Macromol ; 181: 605-611, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1141888

ABSTRACT

The outbreaks of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in 2019, have highlighted the concerns about the lack of potential vaccines or antivirals approved for inhibition of CoVs infection. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) which is almost preserved across different viral species can be a potential target for development of antiviral drugs, including nucleoside analogues (NA). However, ExoN proofreading activity of CoVs leads to their protection from several NAs. Therefore, potential platforms based on the development of efficient NAs with broad-spectrum efficacy against human CoVs should be explored. This study was then aimed to present an overview on the development of NAs-based drug repurposing for targeting SARS-CoV-2 RdRp by computational analysis. Afterwards, the clinical development of some NAs including Favipiravir, Sofosbuvir, Ribavirin, Tenofovir, and Remdesivir as potential inhibitors of RdRp, were surveyed. Overall, exploring broad-spectrum NAs as promising inhibitors of RdRp may provide useful information about the identification of potential antiviral repurposed drugs against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Nucleosides/pharmacology , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Computational Biology/methods , Drug Repositioning/methods , Humans , Models, Molecular , RNA-Dependent RNA Polymerase/antagonists & inhibitors
7.
Talanta ; 223(Pt 1): 121704, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1023756

ABSTRACT

The rapid outbreak of coronavirus disease 2019 (COVID-19) around the world is a tragic and shocking event that demonstrates the unpreparedness of humans to develop quick diagnostic platforms for novel infectious diseases. In fact, statistical reports of diagnostic tools show that their accuracy, specificity and sensitivity in the detection of COVID hampered by some challenges that can be eliminated by using nanoparticles (NPs). In this study, we aimed to present an overview on the most important ways to diagnose different kinds of viruses followed by the introduction of nanobiosensors. Afterward, some methods of COVID-19 detection such as imaging, laboratory and kit-based diagnostic tests are surveyed. Furthermore, nucleic acids/protein- and immunoglobulin (Ig)-based nanobiosensors for the COVID-19 detection infection are reviewed. Finally, current challenges and future perspective for the development of diagnostic or monitoring technologies in the control of COVID-19 are discussed to persuade the scientists in advancing their technologies beyond imagination. In conclusion, it can be deduced that as rapid COVID-19 detection infection can play a vital role in disease control and treatment, this review may be of great help for controlling the COVID-19 outbreak by providing some necessary information for the development of portable, accurate, selectable and simple nanobiosensors.


Subject(s)
Biosensing Techniques , COVID-19/diagnosis , Nanotechnology , Humans , Reagent Kits, Diagnostic , Sensitivity and Specificity
8.
Biomed Pharmacother ; 130: 110559, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-702922

ABSTRACT

As the number of people infected with the newly identified 2019 novel coronavirus (SARS-CoV2) is continuously increasing every day, development of potential therapeutic platforms is vital. Based on the comparatively high similarity of receptor-binding domain (RBD) in SARS-CoV2 and SARS-CoV, it seems crucial to assay the cross-reactivity of anti-SARS-CoV monoclonal antibodies (mAbs) with SARS-CoV2 spike (S)-protein. Indeed, developing mAbs targeting SARS-CoV2 S-protein RBD could show novel applications for rapid and sensitive development of potential epitope-specific vaccines (ESV). Herein, we present an overview on the discovery of new CoV followed by some explanation on the SARS-CoV2 S-protein RBD site. Furthermore, we surveyed the novel therapeutic mAbs for targeting S-protein RBD such as S230, 80R, F26G18, F26G19, CR3014, CR3022, M396, and S230.15. Afterwards, the mechanism of interaction of RBD and different mAbs were explained and it was suggested that one of the SARS-CoV-specific human mAbs, namely CR3022, could show the highest binding affinity with SARS-CoV2 S-protein RBD. Finally, some ongoing challenges and future prospects for rapid and sensitive advancement of therapeutic mAbs targeting S-protein RBD were discussed. In conclusion, it may be proposed that this review may pave the way for recognition of RBD and different mAbs to develop potential therapeutic ESV.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pandemics , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , Antigens, Viral/metabolism , Binding Sites, Antibody , COVID-19 , COVID-19 Vaccines , Coronavirus/chemistry , Coronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes/immunology , Humans , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation , Protein Domains , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines/immunology
9.
J Biomol Struct Dyn ; 39(10): 3780-3786, 2021 07.
Article in English | MEDLINE | ID: covidwho-457575

ABSTRACT

Researchers have reported some useful information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leading to CoV disease 2019 (COVID-19). Several studies have been performed in order to develop antiviral drugs, from which a few have been prescribed to patients. Also, several diagnostic tests have been designed to accelerate the process of identifying and treating COVID-19. It has been well-documented that the surface of host cells is covered by some receptors, known as angiotensin-converting enzyme 2 (ACE2), which mediates the binding and entry of CoV. After entering, the viral RNA interrupts the cell proliferation system to activate self-proliferation. However, having all the information about the outbreakof the SARS-COV-2, it is not still clear which factors determine the severity of lung and heart function impairment induced by COVID-19. A major step in exploring SARS-COV-2 pathogenesis is to determine the distribution of ACE2 in different tissues . In this review, the structure and origin of CoV, the role of ACE2 as a receptor of SARS-COV-2 on the surface of host cells, and the ACE2 distribution in different tissues with a focus on lung and cardiovascular system have been discussed. It was also revealed that acute and chronic cardiovascular diseases (CVDs) may result in the clinical severity of COVID-19. In conclusion, this review may provide useful information in developing some promising strategies to end up with a worldwide COVID-19 pandemic.Communicated by Ramaswamy H. Sarma.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , COVID-19/diagnosis , Heart , Humans , Lung , Pandemics , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL